The Chromium(II) Reduction of Vanadium(III) in Aqueous Perchloric Acid Solutions

By A. G. SYKES

(Department of Inorganic and Structural Chemistry, The University, Leeds 2)

THE recent paper by Espenson¹ on the reaction of chromium(II) with vanadium(III),

$$Cr^{II} + V^{III} \rightarrow Cr^{III} + V^{II}$$

at ionic strength $\mu = 0.5M$, has coincided with a similar but less complete study of this reaction in these laboratories at $\mu = 2.0M$. In the mechanism proposed by Espenson it is surprising that a path involving hydrolysed species, (*i.e.* the reaction of Cr^{2+} with VOH²⁺), is not effective. A closer look at his results at 25° has shown that there is in fact ample evidence for such a path.

The reaction is first order in both reactants

$$d[\mathrm{Cr}^{\mathrm{III}}]/dt = k_{\mathrm{obs}}[\mathrm{Cr}^{\mathrm{II}}] \ [\mathrm{V}^{\mathrm{III}}],$$

and from the hydrogen-ion dependence of $k_{\rm obs}$ details concerning the mechanism of the reaction can be inferred. Espenson believed the hydrogen-ion dependence to be of the form

$$k_{\rm obs} = q/(r + [{\rm H}^+]),$$

and in agreement with this proposed the mechanism

$$\begin{aligned} \mathrm{Cr}^{2+} + \mathrm{V}^{3+} + n\mathrm{H}_2\mathrm{O} &\rightleftharpoons \mathrm{Cr}(\mathrm{OH})_n\mathrm{V}^{(5-n)} + n\mathrm{H}^+, \\ \mathrm{Cr}(\mathrm{OH})_n\mathrm{V}^{(5-n)+} + (n-1)\mathrm{H}^+ &\to \mathrm{Cr}\mathrm{OH}^{2+} + \mathrm{V}^{2+}. \end{aligned}$$

In these equations n is almost certainly 1 or 2 and the binuclear intermediate either CrOHV⁴⁺ or Cr(OH)₂V³⁺, where the latter can be written in the simpler form CrOV³⁺. For convenience a value of n = 1 has been assumed. With the inclusion of the further reaction between Cr²⁺ and VOH²⁺ the mechanism becomes

$$Cr^{2+} + V^{3+} + H_2O \stackrel{k_1}{\approx} CrOHV^{4+} + H^+,$$

$$Cr^{2+} + VOH^{2+} \stackrel{k_2}{\approx} CrOHV^{4+},$$

$$k_{-2}$$

$$CrOHV^{4+} \stackrel{k_3}{\rightarrow} CrOH^{2+} + V^{2+}.$$

and assuming stationary-state kinetics for the binuclear intermediate $CrOHV^{4+}$ it can be shown that

$$k_{\rm obs} = \frac{k_1 k_3 + k_2 k_3 K_{\rm H} [{\rm H}^+]^{-1}}{k_{-2} + k_3 + k_{-1} [{\rm H}^+]}$$

¹ J. H. Espenson, Inorg. Chem., 1965, 4, 1025.

where $K_{\rm H}$ is the hydrolysis constant for V³⁺. An identical expression is obtained here if the binuclear intermediate CrOV³⁺ and not CrOVH⁴⁺ is formed, *i.e.* with a value n = 2 etc. The above expression may be written in the form

$$k_{\rm obs}(c + [{\rm H}^+]) = a + b[{\rm H}^+]^{-1}$$

and assuming different values for c the left-hand side of the equation can be plotted against $[H^+]^{-1}$, (Figure 1). This equation corresponds to that used by Espenson if a = q, b = 0 and c = r. Thus a plot of the data at 25° with c = 0.108should give a straight line parallel to the $[H^+]^{-1}$ axis. With two exceptions however it can be seen that the points lie on a smooth curve. A

FIGURE 1.

The line $c = 0.160 \ l^{-1}$ mole is a better fit of experimental data than the horizontal (broken line) for $c = 0.108 \ l^{-1}$ mole.

linear plot is in fact obtained with c = 0.160l.⁻¹ mole, when a = 0.67 sec.⁻¹ and b = 0.0073l.⁻¹ mole sec.⁻¹ (the latter using the literature value of $K_{\rm H} = 0.002$ l.⁻¹ mole).² It is concluded that the equation $k_{\rm obs} = q/(r + [\rm H^+])$ does not provide an adequate fit of the experimental data, and that the further reaction of Cr²⁺ with VOH²⁺ is required to explain satisfactorily the variation of $k_{\rm obs}$ with [H⁺]. Individual rate constants cannot be obtained from this treatment. From the ratio of b to a, a value of $k_2/k_1 = 5.4$ is obtained, which is considerably less than values generally observed for such reactions.

Formation of a binuclear intermediate is particularly favourable in this instance because both the product ions have t_{2g}^{3} electronic configurations. The substitution-inert properties of hexaquochromium(III) are well known, but (2+)-ions are generally more labile. Thus while vanadium(II) is the most inert of the first-transition-series (2+)-ions, characteristic rates of substitution³ are believed to be of the order 10^4 sec.⁻¹. The mechanism found here is of significance since it raises again the question as to whether reactions between hexaquo-ions are in fact by an outersphere electron-tunnelling mechanism. If in the above inner-sphere mechanism k_1 , k_2 , and k_3 are much bigger than k_{-1} and k_{-2} (which could well be the case with other reactants), then the expression for $k_{\rm obs}$ reduces to the more usual form

$$k_{\rm obs} = k_1 + k_2 K_{\rm H} [{\rm H}^+]^{-1}.$$

As is to be expected rate constants at 25° and $\mu = 2.0$ mare somewhat bigger than corresponding values at $\mu = 0.5$ m. Thus at hydrogen-ion concentrations 0.395, 0.48, 1.08, and 1.82 experimental values of $k_{\rm obs}$ are 1.91, 1.63, 0.82, and 0.54 l. mole⁻¹ sec.⁻¹ respectively.

(Received, August 26th, 1965; Com. 511.)

³ M. Eigen, "Seventh Conference on Co-ordination Chemistry," Butterworths, London, 1963, p. 105.

² S. C. Furman and C. S. Garner, J. Amer. Chem. Soc., 1950, 72, 1785.